Hepatocellular carcinoma (HCC) progression is facilitated by gene-silencing chromatin histone hypoacetylation due to histone deacetylase (HDAC) activation. However, inhibiting HDACs-an effective treatment for lymphomas-has shown limited success in solid tumors. We report the discovery of a class of HDAC inhibitors (HDACi) that demonstrates exquisite selective cytotoxicity against human HCC cells. The lead compound STR-V-53 (3) showed a favorable safety profile in mice and robustly suppressed tumor growth in orthotopic xenograft models of HCC. When combined with the anti-HCC drug sorafenib, STR-V-53, showed greater in vivo efficacy. Moreover, STR-V-53 combined with anti-PD1 therapy increased the CD8+ to regulatory T-cell (Treg) ratio and survival in an orthotopic HCC model in immunocompetent mice. This combination therapy resulted in durable responses in 40% of the mice. Transcriptomic analysis revealed that STR-V-53 primed HCC cells to immunotherapy through HDAC inhibition, impaired glucose-regulated transcription, impaired DNA synthesis, upregulated apoptosis, and stimulated the immune response pathway. Collectively, our data demonstrate that the novel HDACi STR-V-53 is an effective anti-HCC agent that can induce profound responses when combined with standard immunotherapy.
Read full abstract