Protein kinase A (PKA) is a ubiquitous cAMP-dependent enzyme in mammalian tissues. The inactive PKA holoenzyme disassociates into a homodimer of regulatory (R) subunits and two active catalytic (C) subunits upon cAMP binding to two tandem domains (termed CBD-A and CBD-B) in R subunits. The release of cAMP facilitates reassociation of R and C subunits, resetting PKA to its basal state. The cAMP-mediated structural changes in the activation-termination cycle remain partially understood. The multimeric states of PKA complicate the issue and are particularly less studied. Therefore, we computationally investigated the conformational dynamics of the PKA RIα homodimer in different cAMP-bound states. The absence of cAMP in two CBDs differently affects the conformational dynamics of protomers. Moreover, such disparate responses are extended to the dimer interface constituted by the N-terminal helical sub-domains termed N3A motifs. The removal of cAMP from CBD-A induces large-scale structural changes of individual R subunits towards the holoenzyme state, consistent with previous simulations of a single R subunit. Meanwhile it keeps the structural heterogeneity of the N3A-N3A' dimer interface observed in the fully bound state. By contrast, the removal of cAMP from CBD-B does not affect individual R subunits but alters the conformational space of the N3A-N3A' dimer interface. The cAMP-coupled structural changes of each protomer and conserved conformational space of the N3A-N3A' dimer interface are essential for the transition between the fully cAMP-bound R2 homodimer and the R2C2 holoenzyme as suggested by their crystal structures. Our work provides structural insights into the regulatory mechanism of cAMP in PKA signaling.