Plausible phenotype mechanisms following bariatric surgery include changes in neural and gastrointestinal physiology. This pilot study aims to investigate individual and combined neurologic, gut microbiome, and plasma hormone changes pre- versus post-vertical sleeve gastrectomy (VSG), Roux-en-Y gastric bypass (RYGB), and medical weight loss (MWL). We hypothesized post-weight loss phenotype would be associated with changes in central reward system brain connectivity, differences in postprandial gut hormone responses, and increased gut microbiome diversity. Subjects included participants undergoing VSG, n = 7; RYGB, n = 9; and MWL, n = 6. Ghrelin, glucagon-like peptide-1, peptide-YY, gut microbiome, and resting state functional magnetic resonance imaging (rsfMRI; using fractional amplitude of low-frequency fluctuations [fALFF]) were measured pre- and post-intervention in fasting and fed states. We explored phenotype characterization using clustering on gut hormone, microbiome, and rsfMRI datasets and a combined analysis. We observed more widespread fALFF differences post-bariatric surgery versus post-MWL. Decreased post-prandial fALFF was seen in food reward regions post-RYGB. The highest number of microbial taxa that increased post-intervention occurred in the RYGB group, followed by VSG and MWL. The combined hormone, microbiome, and MRI dataset most accurately clustered samples into pre- versus post-VSG phenotypes followed by RYGB subjects. The data suggest surgical weight loss (VSG and RYGB) has a bigger impact on brain and gut function versus MWL and leads to lesser post-prandial activation of food-related neural circuits. VSG subjects had the greatest phenotype differences in interactions of microbiome, rsfMRI, and gut hormone features, followed by RYGB and MWL. These results will inform future prospective research studying gut-brain changes post-bariatric surgery.
Read full abstract