Steroid hormones largely exert their actions by activating nuclear receptors, which, as transcription factors, powerfully influence fundamental processes of neural development. Often, steroid receptor action demonstrates remarkable specificity under different developmental, anatomical or hormonal conditions. Yet, the mechanisms underlying such specificity are poorly understood. The present study examined the anatomically-specific regulation of progestin receptor (PR) expression by oestrogen receptor (ER) activation in the ventromedial nucleus (VMN) of the hypothalamus and the medial preoptic nucleus (MPN) of the neonatal female rat brain, using the selective oestrogen receptor modulators (SERMs), tamoxifen and ICI 182780 (ICI), in the presence or absence of oestradiol benzoate (EB) treatment. The results demonstrate that PR immunoreactivity (PR-ir) in the neonatal female MPN was significantly increased by EB and this increase was abolished by either tamoxifen or ICI treatment. In contrast, within the VMN of the same animals, EB had no effect on PR-ir and the SERMs only modestly decreased PR-ir. Interestingly, ICI acted as a true antagonist regardless of EB treatment, whereas tamoxifen acted as an ER agonist in the absence of EB in the MPN, but not the VMN, representing one of the first in vivo demonstrations of tissue-specific and oestradiol-independent effects of tamoxifen on ER activation. The present results indicate that PR expression is highly dependent on oestradiol and its receptor in the MPN, although it is independent of both oestradiol and ER activation within the neonatal VMN. These findings demonstrate the anatomically-specific actions of oestradiol and its receptor to induce PR in two brain regions controlling different aspects of female reproductive behaviours in adulthood.