In this work, we aim to investigate and compare the combustion reactivities of real biofuel soot and fossil-fuel soot in the active and passive regeneration conditions of DPF and GPF through temperature-programmed oxidation (TPO). Higher reactivity of biofuel soot is achieved even under GPF conditions with extremely low oxygen concentration (~ 1%), which provides a great potential for low-temperature regeneration of GPF. Such a result is mainly attributed to the low graphitization and less surface C = C groups of biofuel soot. Unfortunately, the presence of high-content ashes (~ 47%) and P impurity in real biofuel soot hinder its combustion reactivity. TPO evidences that the O2/NOX-lacking conditions in GPF are key factors to impact the combustion of soot, especially fossil-fuel soot. This work provides some useful information for understanding real biofuel and fossil-fuel soot combustion in GPF and DPF regeneration and further improvement in filter regeneration process.
Read full abstract