Abstract

The performance of catalysts used in after-treatment systems is the key factor for the removal of diesel soot, which is an important component of atmospheric fine particle emissions. Herein, three-dimensionally ordered macroporous–mesoporous TixSi1-xO2 (3DOM-m TixSi1-xO2) and its supported MnOx catalysts doped with different alkali/alkaline-earth metals (AMnOx/3DOM-m Ti0.7Si0.3O2 (A: Li, Na, K, Ru, Cs, Mg, Ca, Sr, Ba)) were prepared by mesoporous template (P123)-assisted colloidal crystal template (CCT) and incipient wetness impregnation methods, respectively. Physicochemical characterizations of the catalysts were performed using scanning electron microscopy, X-ray diffraction, N2 adsorption–desorption, H2 temperature-programmed reduction, O2 temperature-programmed desorption, NO temperature-programmed oxidation, and Raman spectroscopy techniques; then, we evaluated their catalytic performances for the removal of diesel soot particles. The results show that the 3DOM-m Ti0.7Si0.3O2 supports exhibited a well-defined 3DOM-m nanostructure, and AMnOx nanoparticles with 10–50 nm were evenly dispersed on the inner walls of the uniform macropores. In addition, the as-prepared catalysts exhibited good catalytic performance for soot combustion. Among the prepared catalysts, CsMnOx/3DOM-m Ti0.7Si0.3O2 had the highest catalytic activity for soot combustion, with T10, T50, and T90 (the temperatures corresponding to soot conversion rates of 10%, 50%, and 90%) values of 285, 355, and 393°C, respectively. The high catalytic activity of the CsMnOx/3DOM-m Ti0.7Si0.3O2 catalysts was attributed to their excellent low-temperature reducibility and homogeneous macroporous–mesoporous structure, as well as to the synergistic effects between Cs and Mn species and between CsMnOx and the Ti0.7Si0.3O2 support.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call