Abstract
The electrochemical corrosion of ductile pipes (DPs) in drinking water distribution systems (DWDS) has a crucial impact on cement-mortar lining (CML) failure and metal release, potentially leading to drinking water quality deterioration and posing a risk to public health. An in-situ scanning vibrating electrode technique (SVET) with micron-scale resolution, microscopic scale detection and water quality analysis were used to investigate the corrosion behavior and metal release from DPs throughout the whole CML failure process. Metal pollutants release occurred at three different stages of CML failure process, and there are potential risks of water quality deterioration exceeding the maximum allowable levels set by national standards in the partial failure stage and lining peeling stage. Furthermore, the effects of water chemistry (Cl−, SO42−, NO3−, and Ca2+) on corrosion scale growth and iron release activity, were investigated during the CML partial failure stage. Results showed that the CML failure process in DPs was accelerated by the autocatalysis of localized corrosion. Cl− was found to damage the uncorroded metal surface, while SO42− mainly dissolved the corrosion scale surface, increasing iron release. Both the oxidation of NO3− and selective sedimentation of Ca2+ were found to enhance the stability of corrosion scales and inhibit iron release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.