The Nd-doped TiO2 thin films with higher hydrophilic and photocatalytic activities were prepared on glass slides by an acid-catalyzed sol–gel method. The effects of Nd doping on crystalline phase, surface composition and optical property were investigated by means of techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), optical contact angle tester and UV-Vis spectroscopy. The results show that Nd doping obviously influences the hydrophilic and photocatalytic activities of TiO2 thin films. Nd doping could cause the TiO2 lattice distortion, inhibit phase transition from anatase to rutile, cause red shift of the absorption spectrum edge, produce hydroxyl radicals (·OH), and accelerate surface hydroxylation, which result in a significant improvement in the hydrophilicity and photoreactivity of Nd-doped TiO2 thin films. When the content of Nd is 0.1% (mass fraction), TiO2 thin films achieve the smallest grain size (about 15 nm), and the hydrophilic and photocatalytic activities of TiO2 thin film reach the maximum, the contact angle is only 8.1°, and 92% of methylene blue is finally degraded. Moreover, the modification mechanism of Nd doping was also discussed.
Read full abstract