Critically infected patients with COVID-19 (coronavirus disease 2019) are prone to develop sepsis-related coagulopathy as a result of a robust immune response. The mechanism underlying the relationship between sepsis and COVID-19 is largely unknown. LMWH (low molecular weight heparin) exhibits both anti-inflammatory and anti-coagulating properties that result in a better prognosis of severely ill patients with COVID-19 co-associated with sepsis-induced coagulopathy or with a higher D-dimer value. Heparin-associated molecular targets and their mechanism of action in sepsis/COVID-19 are not well understood. In this work, we characterize the pharmacological targets, biological functions and therapeutic actions of heparin in sepsis/COVID-19 from the perspective of network pharmacology. A total of 38 potential targets for heparin action against sepsis/COVID-19 and 8 core pharmacological targets were identified, including IL6, KNG1, CXCL8, ALB, VEGFA, F2, IL10 and TNF. Moreover, enrichment analysis showed that heparin could help in treating sepsis/COVID-19 through immunomodulation, inhibition of the inflammatory response, regulation of angiogenesis and antiviral activity. The pharmacological effects of heparin against these targets were further confirmed by molecular docking and simulation analysis, suggesting that heparin exerts effective binding capacity by targeting the essential residues in sepsis/COVID-19. Prospective clinical practice evaluations may consider the use of these key prognostic indicators for the treatment of sepsis/COVID-19. Communicated by Ramaswamy H. Sarma
Read full abstract