Parkinson's disease (PD), the second most common neurodegenerative condition, is primarily characterized by motor dysfunctions due to dopaminergic neuronal loss in the Substantia Nigra (SN), with oxidative stress playing a significant role in its progression. This study investigates the neuroprotective potential of Pelargonium graveolens (Thunb.) L'Hér leaves in a rotenone-induced PD rat model. The total ethanolic extract and its fractions, obtained via Diaion HP-20 column chromatography, were evaluated for monoamine oxidase-B (MAO-B) inhibition in vitro. The 50% methanol fraction (PG50) demonstrated the highest MAO-B inhibition (IC50 5.26 ± 0.12µg/ml) compared to the reference drug selegiline (IC50 0.021 ± 0.003µg/ml). In a rotenone-induced PD rat model, PG50 (100mg/kg, p.o.) alleviated motor deficits (assessed via the wire hanging test), and restored norepinephrine, dopamine, and serotonin levels. PG50 and L-dopa reduced α-synuclein levels by 367.60% and 377.48%, respectively. Oxidative balance was restored with increased glutathione (23.12%) and decreased malondialdehyde (164.19%) in brain tissues. PG50 significantly reduced serum TNF-α (572.79%) and IL-6 (70.84%)levels, and improved succinate dehydrogenase (14.47%) and lactate dehydrogenase (7.74%) activities in brain tissues. Histopathological alterations in the SN were also ceased. UPLC-MS/MS analysis identified 61 metabolites, including 32 flavonoids, 13 phenolic acids, 7 coumarins, 5 phenolic glycosides, and 4 dicarboxylic acids, with in silico docking showing strong MAO-B binding by methoxylated flavonoids like methoxyluteolin dimethyl ether (docking score: - 8.0625kcal/mol), surpassing that of safinamide (- 8.2615kcal/mol). These findings suggest that P. graveolens holds promise as a neuroprotective agent against rotenone-induced PD.
Read full abstract