Thymol, known for its antimicrobial properties, was combined with acetic acid, betaine, and caprylic acid to form hydrophobic natural eutectic solvents (NAES), whose influence on the properties of bovine gelatin films was investigated. Films showed enhanced mechanical performance and a clear plasticizing effect provided by the natural eutectic solvents. At 300 wt% concentration, tensile strength and elongation at break reached 871 ± 78 kPa and 141 ± 10 % for acetic acid, 391 ± 41 kPa and 159 ± 10 % for betaine, and 1209 ± 52 kPa and 198 ± 15 % for caprylic acid. Water vapor permeability and total soluble matter were reduced, and swelling decreased to ~250 %, ~150 %, and ~ 200 % for films with 300 wt% of acetic acid, betaine, and caprylic acid, respectively. Pure thymol exhibited significant volatility, with 17.10 ± 1.50 % weight loss over one week, while the NADES demonstrated dramatically reduced losses (up to 1.15 ± 0.04 %). The films displayed exceptional antibacterial activity, achieving inhibition diameters of 34 mm against Gram-positive and Gram-negative bacteria, and films with caprylic or acetic NAES achieved undetectable CFU levels for major pathogens on chicken breast. These results highlight the antimicrobial potency and enhanced stability of NAES-based gelatin films for active packaging applications.
Read full abstract