Abstract

The migration of metal ions to the food matrix has been always a challenge in the production of active food packaging films. In this study, it was tried to evaluate the idea of using hairy cellulose nanocrystals (HCNs) in controlling the migration of Silver Nanoparticles (AgNPs) from polycaprolactone (PCL)-based films to the Tilapia fish. HCNs and the final films (integrated with various amounts of HCNs and AgNPs) were evaluated physicochemically and mechanically. Tilapia fish were packed using the films and after specific periods, the fish samples were assessed microbiologically and physiochemically. According to the results, incorporating NPs into PCL films enhanced tensile strength, elasticity, and toughness making the films more resistant to breakage and deformation under stress. The introduction of HCNs reduced the surface roughness level, decreasing AgNPs migration, but also accelerated the degradation rate. Films with [1% AgNPs +2% HCNs] and [1% AgNPs] had the lowest and highest water vapor transmission rate. The use of AgNPs (1%) + HCNs (2%) incorporated into PCL films resulted in a lower pH value, TVB-N, TBARs, and PV. It also decreased microbial activities in samples in comparison to the control. Therefore, the idea of using HCNs along with antibacterial metal-based nanoparticles can control the rate of ion migration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.