BackgroundAs a significant biomarker of melanocytic lesions, tyrosinase (TYR) plays an essential role in the clinical diagnosis and treatment of melanin-related diseases. Thus, it is important to develop robust methods for assessing TYR activity. Covalent organic frameworks (COFs) have garnered considerable attention owing to their unique properties, including high chemical stability, good biocompatibility, and large surface area compared with organic dyes, noble metal nanoclusters, and semiconductor quantum dots. However, most COFs are insoluble in water and exhibit weak or no fluorescence emission. Therefore, the development of a water-soluble fluorescent COF for detecting TYR activity in biological samples remains highly desired. ResultsIn this work, a sensitive and facile fluorometric method based on fluorescent COF was constructed for the detection of TYR activity in human serum samples. The water-soluble COF was fabricated through the condensation polymerization of 4′,4‴,4′′′′′,4′′′′′′′-(1,2-ethene-diylidene) tetrakis [1,1′-biphenyl]-4-carboxaldehyde and 2,4,6-tris-(4-aminophenyl)-triazine. The resulting COF displayed yellow-green fluorescence with a maximum emission peak at 560 nm. Tyrosine was catalyzed by TYR to produce melanin-like polymers which formed a coating on the surface of COF and effectively quenched its fluorescence due to fluorescence resonance energy transfer. The proposed approach demonstrated a strong linear correlation in the range of 0.5–80 U/L with a low detection limit of 0.09 U/L. Additionally, the limit of detection for kojic acid, serving as a representative TYR inhibitor, was determined to be 0.0004 μg/mL. SignificanceOur proposed fluorometric sensing platform exhibited exceptional selectivity, sensitivity, and satisfactory recoveries in human serum samples, which is of paramount importance for the clinical diagnostics of melanin-related diseases. Furthermore, the proposed approach was further employed for the screening of TYR inhibitors, suggesting the potential applications in clinical treatment and pharmaceutical research.
Read full abstract