Polyethylene oxide (PEO) has become a highly sought-after polymer electrolyte for lithium-ion batteries (LIBs) due to its high ionic conductivity, strong mechanical properties, and broad electrochemical stability range. However, its usefulness is hindered by its limited ionic conductivity at typical temperatures (<60 °C). Many researchers have delved into the integration of active fillers into the PEO matrix to improve the ionic conductivity and overall efficiency of composite polymer electrolytes (CPEs) for LIBs. This review delves deeply into the latest developments and insights in CPEs for LIBs, focusing on the role of PEO-active filler composites. It explores the impact of different types and morphologies of active fillers on the electrochemical behavior of CPEs. Additionally, it explores the mechanisms that contribute to the improved ionic conductivity and Li-ion transport in PEO-based CPEs. This paper also emphasizes the present obstacles and prospects in the advancement of CPEs containing PEO-active filler composites for LIBs. It serves as a valuable reference for scientists and engineers engaged in the domain of advanced energy storage systems, offering insights for the forthcoming development and enhancement of CPEs to achieve superior performance in LIBs.
Read full abstract