We introduce two wavefront-based methods for the inverse problem of electrocardiography, which we term wavefront-based curve reconstruction (WBCR) and wavefront-based potential reconstruction (WBPR). In the WBCR approach, the epicardial activation wavefront is modeled as a curve evolving on the heart surface, with the evolution governed by factors derived phenomenologically from prior measured data. The body surface potential/wavefront relationship is modeled via an intermediate mapping of wavefront to epicardial potentials, again derived phenomenologically. In the WBPR approach, we iteratively construct an estimate of epicardial potentials from an estimated wavefront curve according to a simplified model and use it as an initial solution in a Tikhonov regularization scheme. Initial simulation results using measured canine epicardial data show considerable improvement in reconstructing activation wavefronts and epicardial potentials with respect to standard Tikhonov solutions. In particular the WBCR method accurately finds the anisotropic propagation early after epicardial pacing, and the WBPR method finds the wavefront (regions of sharp gradient of the potential) both accurately and with minimal smoothing.