Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable channel activated by diverse physical and chemical stimuli, including mechanical stress and endogenous lipid arachidonic acid (AA) and its metabolites. Phosphorylation of TRPV4 by protein kinase A (PKA) and protein kinase C (PKC) is a predominant mechanism for channel regulation, especially in the cytoplasmic domains due to their importance in protein assembly, and channelopathies. However, studies corresponding to phosphorylation sites for these kinases remain incomplete. We investigated the role of Ser-823 residue as a potential phosphorylation site in regulating TRPV4 activity and chemical agonist-induced channel activation. Using mass spectrometry, we identified a new phosphorylation site Ser-823 residue and confirmed the previously known phosphorylation site Ser-824 in the C-terminal tail. The low level of phosphorylation at Ser-823 was stimulated by PKC and to a lesser extent by PKA in human coronary artery endothelial cells (HCAECs) and human embryonic kidney 293 (HEK 293) cells. AA-induced TRPV4 activation was enhanced in the phosphomimetic S823E but was blunted in the S823A/S824A mutants, whereas the channel activation by the synthetic agonist GSK1016790A was unaffected. Further, TRPV4 activation by AA but not GSK1016790A was blunted or abolished by PKA inhibitor alone or in combination with PKC inhibitor, respectively. Using computational modeling, we refined a previously proposed structural model for TRPV4 regulation by Ser-823 and Ser-824 phosphorylation. Together, these results provide insight into how stimuli-specific TRPV4 activation is regulated by the phosphorylation of discrete residues (e.g., Ser-823 and Ser-824) in the C-terminal domains of the TRPV4 channel.
Read full abstract