Dopamine replacement therapy (DRT) of Parkinson's disease (PD) may trigger non-motor complications, some of which affect hedonic homeostatic regulation. Management of iatrogenic alterations in the affective state in PD is unsatisfactory, partly because of the limitations in the experimental models that are used in the preclinical investigation of the neurobiology and therapy of these alterations. In this connection, we recently employed a new experimental approach consisting in measuring the emission of 50-kHz ultrasonic vocalizations (USVs), a marker of positive affect, in hemiparkinsonian rats treated with drugs used in the DRT of PD. To further strengthen our approach, we here evaluated how the acute and repeated (× 5, on alternate days) administration of apomorphine (2 mg/kg, i.p.) or L-3,4-dihydroxyphenilalanine (L-DOPA, 12 mg/kg, i.p.) modified the immunoreactivity for Zif-268, a marker of neuronal activation, in the nucleus accumbens (NAc), caudate-putamen (CPu) and medial prefrontal cortex (mPFC), which are brain regions that regulate emotional states and drugs' affective properties. Acute and repeated treatment with either apomorphine or L-DOPA stimulated the emission of 50-kHz USVs in hemiparkinsonian rats, and this effect was paired with increased Zif-268 immunoreactivity in the NAc and CPu, but not mPFC. These findings indicate that subcortical and cortical regions may differently regulate the emission of 50-kHz USVs in hemiparkinsonian rats treated with dopaminergic drugs used in the DRT of PD. Moreover, they provide further evidence that measuring 50-kHz USV emissions in hemiparkinsonian rats may be a relevant approach to investigate at the preclinical level the affective properties of antiparkinsonian drugs.
Read full abstract