Myoendothelial gap junctional signaling mediates pulmonary arterial endothelial cell (PAEC)-induced activation of latent TGF-β and differentiation of cocultured pulmonary arterial smooth muscle cells (PASMCs), but the nature of the signal passing from PAECs to PASMCs through the gap junctions is unknown. Because PAECs but not PASMCs synthesize serotonin, and serotonin can pass through gap junctions, we hypothesized that the monoamine is the intercellular signal. We aimed to determine whether PAEC-derived serotonin mediates PAEC-induced myoendothelial gap junction-dependent activation of TGF-β signaling and differentiation of PASMCs. Rat PAECs and PASMCs were monocultured or cocultured with (touch) or without (no-touch) direct cell-cell contact. In all cases, tryptophan hydroxylase 1 (Tph1) transcripts were expressed predominantly in PAECs. Serotonin was detected by immunostaining in both PAECs and PASMCs in PAEC/PASMC touch coculture but was not found in PASMCs in either PAEC/PASMC no-touch coculture or in PASMC/PASMC touch coculture. Furthermore, inhibition of gap junctions but not of the serotonin transporter in PAEC/PASMC touch coculture prevented serotonin transfer from PAECs to PASMCs. Inhibition of serotonin synthesis pharmacologically or by small interfering RNAs to Tph1 in PAECs inhibited the PAEC-induced activation of TGF-β signaling and differentiation of PASMCs. We concluded that serotonin synthesized by PAECs is transferred through myoendothelial gap junctions into PASMCs, where it activates TGF-β signaling and induces a more differentiated phenotype. This finding suggests a novel role of gap junction-mediated intercellular serotonin signaling in regulation of PASMC phenotype.