Mutations in the GJA1 gene that encodes connexin43 (Cx43) cause several rare genetic disorders, including diseases affecting the epidermis. Here, we examined the in vitro functional consequences of a Cx43 mutation, Cx43-G38E, linked to a novel human phenotype of hypotrichosis, follicular keratosis and hyperostosis. We found that Cx43-G38E was efficiently translated in Xenopus oocytes and localized to gap junction plaques in transfected HeLa cells. Cx43-G38E formed functional gap junction channels with the same efficiency as wild-type Cx43 in Xenopus oocytes, although voltage gating of the gap junction channels was altered. Notably, Cx43-G38E significantly increased membrane current flow through the formation of active hemichannels when compared to wild-type Cx43. These data demonstrate the association of increased hemichannel activity to a connexin mutation linked to a skeletal-cutaneous phenotype, suggesting that augmented hemichannel activity could play a role in skin and skeletal disorders caused by human Cx43 mutations.