The alpha subunit (Galpha) of heterotrimeric G proteins is a major determinant of signaling selectivity. The Galpha structure essentially comprises a GTPase "Ras-like" domain (RasD) and a unique alpha-helical domain (HD). We used the vertebrate phototransduction model to test for potential functions of HD and found that the HD of the retinal transducin Galpha (Galphat) and the closely related gustducin (Galphag), but not Galphai1, Galphas, or Galphaq synergistically enhance guanosine 5'-gamma[-thio]triphosphate bound Galphat (GalphatGTPgammaS) activation of bovine rod cGMP phosphodiesterase (PDE). In addition, both HDt and HDg, but not HDi1, HDs, or HDq attenuate the trypsin-activated PDE. GalphatGDP and HDt attenuation of trypsin-activated PDE saturate with similar affinities and to an identical 38% of initial activity. These data suggest that interaction of intact Galphat with the PDE catalytic core may be caused by the HD moiety, and they indicate an independent site(s) for the HD moiety of Galphat within the PDE catalytic core in addition to the sites for the inhibitory Pgamma subunits. The HD moiety of GalphatGDP is an attenuator of the activated catalytic core, whereas in the presence of activated GalphatGTPgammaS the independently expressed HDt is a potent synergist. Rhodopsin catalysis of Galphat activation enhances the PDE activation produced by subsaturating levels of Galphat, suggesting a HD-moiety synergism from a transient conformation of Galphat. These results establish HD-selective regulations of vertebrate retinal PDE, and they provide evidence demonstrating that the HD is a modulatory domain. We suggest that the HD works in concert with the RasD, enhancing the efficiency of G protein signaling.
Read full abstract