A comparison was made between two K vitamin analogs. Growth in vitro of Hep G2 hepatoma cells was inhibited both by Compound 5 (Cpd 5), a recently synthesized thioalkyl analog of vitamin K or 2-(2-mercaptoethanol)-3-methyl-1, 4-naphthoquinone, as well as by synthetic vitamin K3 (menadione). Using synchronized Hep G2 hepatoma cells, the actions of both Cpd 5 and vitamin K3 on cell cycle regulating proteins were examined. Cpd 5 decreased the levels of cyclin D1, Cdk4, p16, p21 and cyclin B1. By contrast, VK3 only decreased the level of cyclin D1, but had no effect on the levels of Cdk4, p16 or p21. Interestingly, both VK3 and VK2 increased the levels of p21. The naturally occurring K vitamins had little effect on cell growth and none on the cyclins or Cdks. Amounts and activity of the G1/S phase controlling Cdc25A were measured. We found that Cpd 5 directly inhibited both Cdc25A activity and its protein expression, whereas VK3 did not. Thus, the main effects of Cpd 5 were on G1 and S phase proteins, especially Cdk4 and Cdc25A amounts in contrast to VK3. Computer docking studies of Cpd 5 and VK3 to Cdc25A phosphatase showed three binding sites. In the best conformation, Cpd 5 was found to be closer to the enzyme active site than VK3. These findings show that Cpd 5 represents a new class of anticancer agent, being a protein tyrosine phosphatase (PTP) antagonist, that binds to Cdc25A with suppression of its activity. Tumors expressing high levels of oncogenic Cdc25A phosphatase may thus be susceptible to the growth inhibitory activities of this class of compound.
Read full abstract