The chemo-preventative effects of dithiolethione compounds are attributed to their activation of anti-oxidant response elements (ARE) by reacting with the Nrf2/Keap1 protein complex. In this study, we demonstrate anti-proliferative effects of the dithiolethione compound ACS-1 in human cancer cell lines (A549 and MDA-MB-231) by increasing the activity of the tumor suppressor PP2A. ACS-1 inhibited EGF-induced cellular proliferation in a concentration and time-dependent manner. Akt activation, as determined by serine-473 phosphorylation, was inhibited by ACS-1 in cells stimulated with either EGF or fibronectin. Furthermore, ACS-1 inhibited mTOR signaling and decreased c-myc protein levels. ACS-1 did not proximally alter EGFR or integrin signaling, but caused a concentration-dependent increase in PP2A activity. The effect of ACS-1 on Akt activation was not observed in the presence of the PP2A inhibitor okadaic acid. ACS-1 effects on PP2A activity were independent of ARE activation and cAMP formation. In addition to ACS-1, other dithiolethione compounds showed similar effects in reducing Akt activation, suggesting that this class of compounds may have other effects beyond chemoprevention.
Read full abstract