It is shown that bacteria Bradyrhizobium japonicum 273 were capable of degrading phenol at moderate concentrations either in a free cell culture or by immobilized cells on granulated activated carbon particles. The amount of degraded phenol was greater in an immobilized cell preparation than in a free culture. The application of a constant electric field during cultivation led to enhanced phenol biodegradation in a free culture and in immobilized cells on granulated activated carbon. The highest phenol removal efficiency was observed for an anode potential of 1.0 V/S.H.E. The effect was better pronounced in a free culture. The enzyme activities of free cells for phenol oxidation and benzene ring cleavage were very sensitive to the anode potential in the first two steps of the metabolic pathway of phenol biodegradation catalyzed by phenol hydroxylase—catechol-1,2-dioxygenase and catechol-2,3-dioxygenase. It was observed that at an anode potential of 0.8 V/S.H.E., the meta-pathway of cleavage of the benzene ring catalyzed by catechol-2,3-dioxygenase became competitive with the ortho-pathway, catalyzed by catechol-1,2-dioxygenase. The obtained results showed that the positive effect of constant electric field on phenol biodegradation was rather due to electric stimulation of enzyme activity than electrochemical anode oxidation.
Read full abstract