BackgroundAcute systemic inflammatory response syndrome arising from infection can lead to multiple organ failure and death, with greater susceptibility occurring in immunocompromised individuals. Moreover, sub-acute chronic inflammation is a contributor to the pathology of diverse degenerative diseases (Parkinson’s disease, Alzheimer’s disease and arthritis). Given the known limitations in Western medicine to treat a broad range of inflammatory related illness as well as the emergence of antibiotic resistance, there is a renewed interest in complementary and alternative medicines (CAMs) to achieve these means.MethodsA high throughput (HTP) screening of >1400 commonly sold natural products (bulk herbs, cooking spices, teas, leaves, supplement components, nutraceutical food components, fruit and vegetables, rinds, seeds, polyphenolics etc.) was conducted to elucidate anti-inflammatory substances in lipopolysaccharide (LPS) (E. coli serotype O111:B4) monocytes: RAW 264.7 macrophages [peripheral], BV-2 microglia [brain]) relative to hydrocortisone, dexamethasone and L-N6-(1Iminoethyl)lysine (L-NIL). HTP evaluation was also carried out for lethal kill curves against E.coli 0157:H7 1x106 CFU/mL relative to penicillin. Validation studies were performed to assess cytokine profiling using antibody arrays. Findings were corroborated by independent ELISAs and NO2–/iNOS expression quantified using the Griess Reagent and immunocytochemistry, respectively. For robust screening, we developed an in-vitro efficacy paradigm to ensure anti-inflammatory parameters were observed independent of cytotoxicity. This caution was taken given that many plants exert tumoricidal and anti-inflammatory effects at close range through similar signaling pathways, which could lead to false positives.ResultsThe data show that activated BV-2 microglia cells (+ LPS 1μg/ml) release >10-fold greater IL-6, MIP1/2, RANTES and nitric oxide (NO2–), where RAW 264.7 macrophages (+ LPS 1μg/ml) produced > 10-fold rise in sTNFR2, MCP-1, IL-6, GCSF, RANTES and NO2–. Data validation studies establish hydrocortisone and dexamethasone as suppressing multiple pro-inflammatory processes, where L-NIL suppressed NO2–, but had no effect on iNOS expression or IL-6. The screening results demonstrate relative few valid hits with anti-inflammatory effects at < 250μg/ml for the following: Bay Leaf (Laurus nobilis), Elecampagne Root (Inula helenium), Tansy (Tanacetum vulgare),Yerba (Eriodictyon californicum) and Centipeda (Centipeda minima), Ashwagandha (Withania somnifera), Feverfew (Tanacetum parthenium), Rosemary (Rosmarinus officinalis), Turmeric Root (Curcuma Longa), Osha Root (Ligusticum porteri), Green Tea (Camellia sinensis) and constituents: cardamonin, apigenin, quercetin, biochanin A, eupatorin, (-)-epigallocatechin gallate (EGCG) and butein. Natural products lethal against [E. coli 0157:H7] where the LC50 < 100 μg/ml included bioactive silver hydrosol-Argentyn 23, green tea (its constituents EGCG > Polyphenon 60 > (-)-Gallocatechin > Epicatechin > (+)-Catechin), Grapeseed Extract (Vitis vinifera), Chinese Gallnut (its constituents gallic acid > caffeic acid) and gallic acid containing plants such as Babul Chall Bark (Acacia Arabica), Arjun (Terminalia Arjuna) and Bayberry Root Bark (Morella Cerifera). ConclusionsThese findings emphasize and validate the previous work of others and identify the most effective CAM anti-inflammatory, antibacterial compounds using these models. Future work will be required to evaluate potential combination strategies for long-term use to prevent chronic inflammation and possibly lower the risk of sepsis in immunocompromised at risk populations.