Lysosomes are lined with a glycocalyx that protects the limiting membrane from the action of degradative enzymes. We tested the hypothesis that Niemann-Pick type C 1 (NPC1) protein aids the transfer of low density lipoprotein-derived cholesterol across this glycocalyx. A prediction of this model is that cells will be less dependent upon NPC1 if their glycocalyx is decreased in density. Lysosome cholesterol content was significantly lower after treatment of NPC1-deficient human fibroblasts with benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside, an inhibitor of O-linked glycosylation. Direct biochemical measurement of cholesterol showed that lysosomes purified from NPC1-deficient fibroblasts contained at least 30% less cholesterol when O-linked glycosylation was blocked. As an independent means to modify protein glycosylation, we used Chinese hamster ovary ldl-D cells defective in UDP-Gal/UDP-GalNAc 4-epimerase in which N- and O-linked glycosylation can be controlled. CRISPR generated, NPC1-deficient ldl-D cells supplemented with galactose accumulated more cholesterol than those in which sugar addition was blocked. In the absence of galactose supplementation, NPC1-deficient ldl-D cells also transported more cholesterol from lysosomes to the endoplasmic reticulum, as monitored by an increase in cholesteryl [(14)C]-oleate levels. These experiments support a model in which NPC1 protein functions to transfer cholesterol past a lysosomal glycocalyx.
Read full abstract