In this paper, we consider the Diophantine equation λ1Un1+⋯+λkUnk=wp1z1…pszs,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda _1U_{n_1}+\\cdots +\\lambda _kU_{n_k}=wp_1^{z_1} \\ldots p_s^{z_s},$$\\end{document} where {Un}n≥0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\{U_n\\}_{n\\ge 0}$$\\end{document} is a fixed non-degenerate linear recurrence sequence of order greater than or equal to 2; w is a fixed non-zero integer; p1,⋯,ps\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p_1,\\dots ,p_s$$\\end{document} are fixed, distinct prime numbers; λ1,⋯,λk\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda _1,\\dots ,\\lambda _k$$\\end{document} are strictly positive integers; and n1,⋯,nk,z1,⋯,zs\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n_1,\\dots ,n_k,z_1,\\dots ,z_s$$\\end{document} are non-negative integer unknowns. We prove the existence of an effectively computable upper-bound on the solutions (n1,⋯,nk,z1,⋯,zs)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(n_1,\\dots ,n_k,z_1,\\dots ,z_s)$$\\end{document}. In our proof, we use lower bounds for linear forms in logarithms, extending the work of Pink and Ziegler (Monatshefte Math 185(1):103–131, 2018), Mazumdar and Rout (Monatshefte Math 189(4):695–714, 2019), Meher and Rout (Lith Math J 57(4):506–520, 2017), and Ziegler (Acta Arith 190:139–169, 2019).