We report on the development of a novel multi-spectral polarimetric imager for atmospheric remote sensing of aerosol and cloud properties. The instrument concept, called the Aerosol Limb Imager (ALI), is ultimately intended for satellite measurements from a low Earth orbit. It utilizes a coupling of a dual transducer acousto-optic tunable filter and a liquid crystal rotator to provide dual linear polarization observations over a wide spectral range covering 600 nm-1500 nm. In the limb, or side-viewing, geometry, these measurements provide the capability to resolve vertical and horizontal distributions of aerosol and cloud properties such as extinction coefficient, optical depth, and particle distribution parameters. Here, we present the design and performance of an ALI prototype. Lab characterization of the instrument is used to develop a mathematical instrument model to predict signal levels under various atmospheric conditions. Results from a sub-orbital flight of the ALI prototype on a stabilized high-altitude stratospheric balloon gondola are presented that show the first known polarimetric, multi-spectral images of the limb radiance. The signal levels obtained agree reasonably well with those predicted by the instrument model using radiative transfer calculations for typical atmospheric conditions.