Seismic impedance inversion is a vital way of geological interpretation and reservoir investigation from a geophysical perspective. However, it is inevitably an ill-posed problem due to the noise or the band-limited characteristic of seismic data. Artificial neural network have been used to solve nonlinear inverse problems in recent years. This research obtained an acoustic impedance profile by feeding seismic profile and background impedance into a well-trained self-attention U-Net. The U-Net got convergence by appropriate iteration, and the output predicted the impedance profiles in the test. To value the quality of predicted profiles from different perspectives, e.g., correlation, regression, and similarity, we used four kinds of indexes. At the same time, our results were predicted by conventional methods (e.g., deconvolution with recursive inversion, and TV regularization) and a 1D neural network was calculated in contrast. Self-attention U-Net showed to be robust to noise and does not require prior knowledge. Furthermore, spatial continuity is also better than deconvolution, regularization, and 1D deep learning methods in contrast. The U-Net in this paper is a type of full convolutional neural network, so there are no limits to the shape of the input. Based on this, a large impedance profile can be predicted by U-Net, which is trained by a patchy training dataset. In addition, this paper applied the proposed method to the field data obtained by the Ceduna survey without any label. The predictions prove that this well-trained network could be generalized from synthetic data to field data.
Read full abstract