Abstract

Prestack or angle stack gathers are inverted to estimate pseudologs at every surface location for building reservoir models. Recently, several methods have been proposed to increase the resolution of the inverted models. All of these methods, however, require that the total number of model parameters be fixed a priori. We have investigated an alternate approach in which we allow the data themselves to choose model parameterization. In other words, in addition to the layer properties, the number of layers is also treated as a variable in our formulation. Such transdimensional inverse problems are generally solved by using the reversible jump Markov chain Monte Carlo (RJMCMC) approach, which is a tool for model exploration and uncertainty quantification. This method, however, has very low acceptance. We have developed a two-step method by combining RJMCMC with a fixed-dimensional MCMC called Hamiltonian Monte Carlo, which makes use of gradient information to take large steps. Acceptance probability for such a transition is also derived. We call this new method “reversible jump Hamiltonian Monte Carlo (RJHMC).” We have applied this technique to poststack acoustic impedance inversion and to prestack (angle stack) AVA inversion for estimating acoustic and shear impedance profiles. We have determined that the marginal posteriors estimated by RJMCMC and RJHMC are in good agreement. Our results demonstrate that RJHMC converges faster than RJMCMC, and it therefore can be a practical tool for inverting seismic data when the gradient can be computed efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call