An air-coupled transducer was developed in this study, utilizing hollow glass microsphere-organosilicon composites as an acoustically matching layer, which demonstrated outstanding acoustic performance. Firstly, a comparison and analysis of the properties and advantages of different substrates was carried out to determine the potential application value of organosilicon substrates. Immediately after, the effect of hollow glass microspheres with different particle sizes and mass fractions on the acoustic properties of the matching layer was analyzed. It also evaluated the mechanical properties of the matching layer before and after optimization. The findings indicate that the optimized composite material attained a characteristic acoustic impedance of 1.04 MRayl and an acoustic attenuation of 0.43 dB/mm, displaying exceptional acoustic performance. After encapsulating the ultrasonic transducer using a 3D-printed shell, we analyzed and compared its emission and reception characteristics to the commercial transducer and found that its emission acoustic pressure amplitude and reception voltage amplitude were 34% and 26% higher, respectively. Finally, the transducer was installed onto a homemade ultrasonic flow meter for practical application verification, resulting in an accuracy rate of 97.4%.