We report on electron transport through an artificial molecule formed by two tunnel coupled quantum dots, which are laterally confined in a two-dimensional electron system of an ${\mathrm{Al}}_{x}{\mathrm{Ga}}_{1\ensuremath{-}x}\mathrm{A}\mathrm{s}/\mathrm{G}\mathrm{a}\mathrm{A}\mathrm{s}$ heterostructure. Coherent molecular states in the coupled dots are probed by photon-assisted tunneling (PAT). Above 10 GHz, we observe clear PAT as a result of the resonance between the microwave photons and the molecular states. Below 8 GHz, a pronounced superposition of phonon- and photon-assisted tunneling is observed. Coherent superposition of molecular states persists under excitation of acoustic phonons.
Read full abstract