Molecular vibrations are generally responsible for chemical energy transport and dissipation in molecular systems. This transport is fast and efficient if energy is transferred by optical phonons in periodic oligomers, but its efficiency is limited by decoherence emerging due to anharmonic interactions with acoustic phonons. Using a general theoretical model, we show that in the most common case of the optical phonon band being narrower than the acoustic bands, decoherence takes place in two stages. The faster stage involves optical phonon multiple forward scattering due to absorption and emission of transverse acoustic phonons, i.e., collective bending modes with a quadratic spectrum; the transport remains ballistic and the speed can be altered. The subsequent slower stage involves phonon backscattering in multiphonon processes involving two or more acoustic phonons resulting in a switch to diffusive transport. If the initially excited optical phonon possesses a relatively small group velocity, then it is accelerated in the first stage due to its transitions to states propagating faster. This theoretical expectation is consistent with the recent measurements of optical phonon transport velocity in alkane chains, increasing with increasing the chain length.
Read full abstract