Ethnopharmacological relevanceAconitum species, with a long history of traditional application, were applied to treat rheumatism, arthritis, stroke, and pain in Chinese medical practice. However, misuse of Aconitum species may induce central nervous toxic effects, such as numbness, vomiting, and even coma. Aconitine has been proved to be the main toxic component of Aconitum plants. Neurotoxicity is the main toxic effect of aconitine, while the underlying mechanism of aconitine remains unclear. Aim of the studyThe purpose of the study is to explore the effects and molecular mechanism of ferroptosis caused by aconitine in vivo and in vitro. Materials and methodsSix-dpf zebrafish larvae and SH-SY5Y cells were treated with different concentrations of aconitine for 24 h. Inhibitors treatment, e.g. pretreatment with Necrostain-1 (Nec-1) and Z-VZD-FMK for 12 h, or with Ferrostain-1 (Fer-1) for 4 h, were involved in the identification of aconitine-induced ferroptosis. Transient transfection experiment was conducted to explore the effects of SLC7A11 in the process of aconitine-induced ferroptosis. The effects of aconitine on morphological changes, lipid peroxidation, ferrous ion, and ferroptosis were detected by transmission electron microscope, flow cytometry, confocal microscopy, enzyme-linked immunosorbent assay and western blotting. ResultsIn SH-SY5Y cells, morphological changes including shrunken mitochondria, increased mitochondrial membranes density and ruptured mitochondrial membranes were captured in aconitine-treated group. The cell viability and GSH content dose-dependently declined, levels of lipid reactive oxygen species (ROS), malondialdehyde (MDA), and ferrous ion significantly increased after aconitine exposure for 24 h. Ferroptosis inhibitor Fer-1 pretreatment effectively increased cell viability, GSH content, and decreased levels of MDA and lipid peroxidation, suggesting that aconitine induced ferroptosis. In addition, the protein expression of SLC7A11 and GPX4 were improved after Fer-1 preincubation, which indicated that aconitine triggered ferroptosis via the inhibition of SLC7A11 and the inactivation of GPX4. Ferroptotic characteristics, including GSH depletion and lipid peroxidation accumulation, were alleviated via overexpression of SLC7A11 to increase protein expression of GPX4. In zebrafish experiment, GSH depletion, lipid peroxidation accumulation, iron overload, and the decreased protein expression of SLC7A11 and GPX4 were also induced in zebrafish larvae after aconitine exposure. Taken together, aconitine triggered ferroptotic cell death via inhibiting SLC7A11/GPX4 signal pathway in vivo and in vitro. ConclusionAll results indicated that aconitine triggered ferroptosis of SH-SY5Y cells and zebrafish larvae nerve cells, which involved the inhibition of SLC7A11/GPX4 signal pathway mediated by lipid peroxidation damage and iron overload.
Read full abstract