To determine expression levels of glial fibrillary acidic protein in patients of sepsis-associated encephalopathy (SAE) and its clinical significance. Methods: Patients, admitted to intensive care units and diagnosed as sepsis, were recruited to our study from October 2016 to August 2018 in the Third Xiangya Hospital, Central South University. SAE is defined as a brain dysfunction secondary to sepsis and without evidence of a primary central nervous system infection or encephalopathy due to other reasons. The SAE group and non-SAE group were classed by Confusion Assessment Method for the ICU (CAM-ICU) score. We measured the levels of serum GFAP, S100β and neuron-specific enolase (NSE) within 24 hours after diagnosis of sepsis, and compared the patients' general clinical data, ICU stay time, 28-day and 180-day mortality. Results: Among 152 enrolled patients, 58 and 94 were assigned to the SAE group and the non-SAE group, respectively. There were a significantly higher Sequential Organ Failure Assessment (SOFA) scores, 28-day mortality rate, as well as 180-day mortality rate in the SAE group (all P<0.001). The levels of GFAP, NSE and S100β in the SAE group were significantly higher than those in the non-SAE group (all P<0.001). The diagnostic values of GFAP was 0.67 μg/L, with sensitivity at 75.9% and specificity at 77.7%. Area under the receiver operating characteristic curve (AUROC) of GFAP, NSE and S100β were 0.803, 0.795 and 0.750, respectively. Pearson analysis showed that serum GFAP level was positively correlated with Acute Physiology and Chronic Health Evaluation II (APACHE II) score, but it was negatively correlated with Glasgow Coma Scale (GCS) score, 28-day survival rate and 180-day survival rate. Conclusion: The level of serum GFAP is significantly increased in SAE, which shows certain correlation with incidence, severity and prognosis of the disease.
Read full abstract