Conventional binding materials, such as silicate cement and lime, present high energy consumption, pollution, and carbon emissions. Therefore, we utilize crushed stone as a stabilization material. Magnesium oxychloride cement (MOC) is modified and used as an inorganic admixture owing to its eco-friendly nature and low carbon content. We analysed the control indicators of an integrated design of MOC-stabilized crushed stone by conducting unconfined compressive strength and water-resistance tests. The optimum mixing composition of the MOC-stabilized crushed stone was determined through the response surface methodology. We determined the best approach and dosage for improving the water resistance of MOC-stabilized crushed stone by comparing the effects of four modification methods: fly ash, citric acid + silica fume, phosphoric acid + waterborne polyurethane, and dihydrogen phosphate potassium salt. We also perform a comparison with 5% ordinary silicate cement-stabilized crushed stone. The results indicate that the MOC-stabilized crushed stone exhibits a rapid increase in strength in the early stage, but this rate reduces after 28 days. The mixing design employs the 4-day unconfined compressive strength and 1-day water resistance coefficient as the technical indicators. The best mixing composition includes a 4.27% MOC dosage and a molar ratio of MgO/MgCl2 of 5.85. We use 1% citric acid + 10% silica fume in equal amounts to replace the MOC dopant method for composite modification of the MOC stabilized crushed stone. Consequently, the 1-day water resistance coefficient before water immersion is significantly increased from 0.78 to 0.91 and its 4-day unconfined compressive strength is only reduced by 0.10 MPa. This significantly improves the water resistance of the MOC-stabilized crushed stone and ensures that its strength remains unaffected, which is the optimal modification method. However, this method must ensure that a small amount of citric acid and silica fume are uniformly distributed in the MOC-stabilized crushed stone, which increases the construction difficulty of the road base.
Read full abstract