Acid-base bifunctional heterogeneous solid catalysts, known as the active site with base-acid properties, exhibited relatively good performance on the transesterification for soybean oil for green fuel production. We investigated the use of niobium and three alkali metal oxides (Li, Na, and K) as MyNbOX (M = Li, Na, K) composite as acid-base catalysts for biodiesel production. MyNbOX catalysts were prepared using a simple solid-state reaction, mixing, and grinding niobium dioxide with alkali metal carbonates calcined at 800 °C in air for 4 h. XRD, BET, FE-SEM, TEM and TPD techniques were employed for catalysts characterization. The highest biodiesel yield (98.08%) was achieved under the transesterification condition of 65 °C, 6 h, 24 methanol/oil molar ratio and 2 wt% of LiNbO3 as the catalyst. The results showed that LiNbO3 could be efficiently reused at least 10 cycles with an insignificant reduction in the biodiesel yield. The physicochemical properties of the biodiesel were further studied and compared with the ASTM and the EN biodiesel specifications. The results showed that the properties of the biodiesel produced complied with the international standard specifications.