▪ AimsMutations of the genes associating with cell differentiation or proliferation are recognized as factors of tumorigenesis or prognosis in hematological malignancies. In pediatric acute lymphoblastic leukemia (ALL), alterations of IKZF1 (a factor of lymphocyte differentiation), TP53 (a cell cycle regulator) and CREBBP (a histone modifier) are found as possible prognostic markers for stratification of treatments. On the other hand, in adult ALL, clinical significance of such alterations remains to be determined. In the present work, we examined whether the mutations in those genes affected the incidence and prognosis in adult ALL patients. MethodsWe investigated 87 adult patients with newly diagnosed ALL treated with JALSG protocols between 1986 and 2011. Age ranged from 15 to 86 years, with a median of 51 years. We obtained cDNA and genomic DNA from the peripheral blood or bone marrow mononuclear cells at diagnosis. CREBBP mutations are dominantly identified in the histone acetyltransferase (HAT) domain. HAT domain in the CREBBP gene was amplified by PCR using cDNA and was subjected to direct sequencing. Additionally other histone modifiers, EZH2, EED, and UTX, were sequenced as the same as in CREBBP. TP53 exons 5 – 8 and 10, in which mutations were commonly reported, were sequenced using genomic DNA. We amplified IKZF1 using RT-PCR for detecting aberrant dominant negative isoforms: Ik6 and Ik10. Genomic deletions of IKZF1 were assessed with RQ-PCR or genomic DNA PCR. We compared clinical profiles between patients with and without such gene mutations. The present study was approved by the Institutional Review Boards and informed consent was obtained from each patient according to guidelines based on the revised Declaration of Helsinki. ResultsIn 87 adult patients with ALL, alterations of CREBBP, EED, TP53 and IKZF1 were detected in 7 (9.5%), 3 (4.8%), 6 (6.9%) and 42 (50%), respectively. None of EZH2 and UTX mutation was found. The alterations of CREBBP and IKZF1 at diagnosis in adult patients were more frequent than those in pediatric patients ever reported. Some gene mutations were not found frequently. Each gene mutation per se did not significantly affect prognosis. We tried to predict the prognosis by scoring gene mutations and chromosomal abnormalities. Philadelphia chromosome (Ph) has great impact to prognosis of patients with ALL. We scored the number of mutated genes and Ph for each patient. As the score was higher, adult patients with ALL had poorer relapse-free survival (P=0.0439) and OS (P=0.4819), but statistical significance was not detected in this small cohort. Conclusions and DiscussionSingle gene mutations, such as IKZF1, can predict the prognosis in pediatric ALL. In adult ALL, however, only few gene mutations are reported to be promising prognostic factors which have impacts to treatment outcomes. Scoring system may be a useful method for predicting prognosis and stratifying treatment in adult ALL. Our study implies the possibility that a variety and heterogeneity of genetic alterations in adult ALL are associated with the pathogenesis for treatment resistance and prognostic marker of adult ALL. Disclosures:No relevant conflicts of interest to declare.