Twenty-six subsurface samples were collected from a borehole at depths of 173.3 to 196.8 m in the saturated zone at the Hanford Site in south-central Washington State. The sampling was performed throughout strata that included fine-grained lacustrine (lake) sediments, a paleosol (buried soil) sequence, and coarse-grained fluvial (river) sediments. A subcoring method and tracers were used to minimize and quantify contamination to obtain samples that were representative of subsurface strata. Sediment samples were tested for total organic carbon, inorganic carbon, total microorganisms by direct microscopic counts, culturable aerobic heterotrophs by plate counts, culturable anaerobes by most-probable-number enumeration, basal respiration rates, and mineralization of (sup14)C-labeled glucose and acetate. Total direct microscopic counts of microorganisms were low, ranging from below detection to 1.9 x 10(sup5) cells g (dry weight)(sup-1). Culturable aerobes and anaerobes were below minimum levels of detection in most samples. Direct microscopic counts, basal respiration rates, and (sup14)C-glucose mineralization were all positively correlated with total organic carbon and were highest in the lacustrine sediments. In contrast to previous subsurface studies, these saturated-zone samples did not have higher microbial abundance and activities than unsaturated sediments sampled from the same borehole, the fine-textured lacustrine sediment had higher microbial numbers and activities than the coarse-textured fluvial sands, and the paleosol samples did not have higher biomass and activities relative to the other sediments. The results of this study expand the subsurface microbiology database to include information from an environment very different from those previously studied.
Read full abstract