Abstract Current response assessment in pediatric brain tumors (PBTs), as recommended by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group, relies on 2D measurements of changes in tumor size. However, there is growing evidence of underestimation of tumor size in PBTs using 2D compared to volumetric (3D) measurement approach. Accordingly, automated methods that reduce manual burden and intra- and inter-rater variability in segmenting tumor subregions and volumetric evaluations are warranted to facilitate tumor response assessment of PBTs. We have developed a fully automatic deep learning (DL) model using the nnUNet architecture on a large cohort of multi-institutional and multi-histology PBTs. The model was trained on widely available standard multiparametric MRI sequences (T1-pre, T1-post, T2, T2-FLAIR) for segmentation of the whole tumor and RAPNO-recommended subregions, including enhancing tumor (ET), non-enhancing tumor (NET), cystic components (CC), and peritumoral edema (ED). As a prerequisite step for accurate tumor segmentation, we also generated another DL model based on DeepMedic for brain extraction from mpMRIs. The models were trained on an institutional cohort of 151 subjects and independently tested on 64 subjects from the internal and 29 patients from external institutions. The trained models showed excellent performance with median Dice scores of 0.98±0.02/0.97±0.02 for brain tissue segmentation, 0.92±0.08/0.90±0.17 for whole tumor segmentation, 0.76±0.31/0.87±0.29 for ET subregion, and 0.82±0.15/0.80±0.28 for segmentation of non-enhancing components (combination of NET, CC, and ED) in internal/external test sets, respectively. The automated segmentation demonstrated strong agreement with expert segmentations in volumetric measurement of tumor components, with Pearson’s correlation coefficients of 0.97, 0.97, 0.99, and 0.79 (p<0.0001) for ET, NET, CC, and ED regions, respectively. Our proposed multi-institutional and multi-histology automated segmentation method has the potential to aid clinical neuro-oncology practice by providing reliable and reproducible volumetric measurements for treatment response assessment.