Power Line Communications-Artificial Intelligence of Things (PLC-AIoT) combines the low cost and high coverage of PLC with the learning ability of AI to provide data collection and transmission capabilities for PLC-AIoT devices in smart parks. With the development of smart parks, their emerging services require secure and accurate time synchronization of PLC-AIoT devices. However, the impact of attackers on the accuracy of time synchronization cannot be ignored. To solve the aforementioned problems, we propose a tampering attack-aware Deep Q-Network (DQN)-based time synchronization algorithm. First, we construct an abnormal clock source detection model. Then, the abnormal clock source is detected and excluded by comparing the time synchronization information between the device and the gateway. Finally, the proposed algorithm realizes the joint guarantee of high accuracy and low delay for PLC-AIoT in smart parks by intelligently selecting the multi-clock source cooperation strategy and timing weights. Simulation results show that the proposed algorithm has better time synchronization delay and accuracy performance.
Read full abstract