Traffic prediction plays an increasingly important role in intelligent transportation systems and smart cities. Both travelers and urban managers rely on accurate traffic information to make decisions about route selection and traffic management. Due to various factors, both human and natural, traffic data often contains missing values. Addressing the impact of missing data on traffic flow prediction has become a widely discussed topic in the academic community and holds significant practical importance. Existing spatiotemporal graph models typically rely on complete data, and the presence of missing values can significantly degrade prediction performance and disrupt the construction of dynamic graph structures. To address this challenge, this paper proposes a neural network architecture designed specifically for missing data scenarios—graph convolutional recurrent ordinary differential equation network (GCRNODE). GCRNODE combines recurrent networks based on ordinary differential equation (ODE) with spatiotemporal memory graph convolutional networks, enabling accurate traffic prediction and effective modeling of dynamic graph structures even in the presence of missing data. GCRNODE uses ODE to model the evolution of traffic flow and updates the hidden states of the ODE through observed data. Additionally, GCRNODE employs a data-independent spatiotemporal memory graph convolutional network to capture the dynamic spatial dependencies in missing data scenarios. The experimental results on three real-world traffic datasets demonstrate that GCRNODE outperforms baseline models in prediction performance under various missing data rates and scenarios. This indicates that the proposed method has stronger adaptability and robustness in handling missing data and modeling spatiotemporal dependencies.
Read full abstract