This paper presents a compact electro-mechanical-fluidic system-modeling method for multidomain system simulation based on multidomain physics that considers the total energy conservation condition, in terms of respective potential and flow quantities. Models for electrical, mechanical, and fluidic domains are developed to design the example of a blood pumping system, where the blood flow is driven by electrically controlled organic actuators. The electrical domain includes an organic mosfet -based control circuit, the mechanical domain includes organic actuators, and the fluidic domain includes a flexible fluid-flow channel. Control circuit, actuators, and fluid models are coupled through equivalent circuits, where interconnection relationships between two neighboring domains are expressed using the energy conservation concept. The model accuracy is verified with finite element method (FEM) based numerical simulation. Significantly faster simulation speed than with FEM and good accuracy were achieved.