The conversion of X-ray tomography images into three-dimensional chemical composition requires accurate mass absorption values, high-quality images, and a robust fitting algorithm. The least-squares fits of the images to a three-dimensional chemical composition can proceed with several different options such as minimal vs. over-determined and/or constrained parameters. This project has investigated the impact of XAFS features and a limited CCD dynamic range. These simulated results are compared to a recent experimental project in which synchrotron X-ray tomography was used to image a polymer blend, and from those images, calculated three-dimensional chemical composition maps of the two-component flame retardant, a brominated phthalimide dimer, Saytex ™ BT-93 and a synergist, antimony(III) oxide (Sb 2O 3).