RFID technology acts as a bridge to connect the physical world with the digital space, and RFID system is pervading our daily life in the last few years. The energy consumed by the reader and a tag in resolving the collisions caused by multiple tags is a key issue that affects life time of mobile reader and active tags, as well as the identification accuracy of passive tags. In this paper, the energy consumed by the reader and a tag in resolving the tag collision is examined for the commonly used RFID tag collision resolution protocols, including the frame slotted ALOHA based and the binary query tree based protocols. Numeric evaluation is also performed and the result verifies that regarding to energy consumption, the dynamic frame slotted ALOHA protocol for the Class-1 RFID system performs best among the frame slotted ALOHA protocols, and the modified binary query tree protocol also performs better than the standard binary query tree protocols.