In this research paper, machine learning techniques were applied to a multivariate meteorological time series data for estimating the wheat yield of five districts of Punjab. Wheat yield data and weather parameters over 34years were collected from the study area and the model was developed using stepwise multi-linear regression (SMLR), artificial neural network (ANN), support vector regression (SVR), random forest (RF) and deep neural network (DNN) techniques. Wheat yield estimation was done at the tillering, flowering, and grain-filling stage of the crop by considering weather variables from 46 to 4th, 46 to 8th, and 46 to 11th standard meteorological week. Weighted and unweighted Meteorological variables and yield data were used to train, test, and validate the models in R software. The evaluation results showed a consistent and promising performance of RF, SVR, and DNN models for all five districts with an overall MAPE and nRMSE value of less than 6% during validation at all three growth stages. These models exhibited outstanding performance during validation for the Faridkot, Ferozpur, and Gurdaspur districts. Based on accuracy parameters MAPE, RMSE, nRMSE, and percentage deviation, the RF model was found better followed by SVR and DNN models and, hence can be used for district-level wheat crop yield estimation at different crop growth stages.
Read full abstract