The potential for combined use of airborne discrete-return LiDAR and digital imagery in the classification and measurement of common seedling stand vegetation was examined in southern Finland (61°50âN, 24°20âE). Classification was based on spectral and textural image features in addition to geometric and radiometric features of the LiDAR. The accuracy of leaf-on, LiDAR-based terrain elevation models was tested as well as the accuracy of LiDAR in the measurement of vegetation heights. LiDAR-based canopy height and the range-normalized intensity of the LiDAR were strong explanatory variables in vegetation classification. Interspecies variation was observed in the height measurement accuracy of LiDAR for different tree, shrub and low vegetation canopies. Elevation models derived with 1â15 pulses per m showed an inherent noise of app. 15â25 cm, which restricts the use of LiDAR in regeneration assessment of very young stands. The spatial pattern of the competing vegetation was reproduced in classification-based raster surfaces, which could be useful in deriving meaningful treatment proposals.2
Read full abstract