We propose polarimetric three-dimensional (3D) integral imaging profilometry and investigate its performance under degraded environmental conditions in terms of the accuracy of object depth acquisition. Integral imaging based profilometry provides depth information by capturing and utilizing multiple perspectives of the observed object. However, the performance of depth map generation may degrade due to light condition, partial occlusions, and object surface material. To improve the accuracy of depth estimation in these conditions, we propose to use polarimetric profilometry. Our experiments indicate that the proposed approach may result in more accurate depth estimation under degraded environmental conditions. We measure a number of metrics to evaluate the performance of the proposed polarimetric profilometry methods for generating the depth map under degraded conditions. Experimental results are presented to evaluate the robustness of the proposed method under degraded environment conditions and compare its performance with conventional integral imaging. To the best of our knowledge, this is the first report on polarimetric 3D integral imaging profilometry, and its performance under degraded environments.
Read full abstract