Abstract

This paper introduces an anchorless deep learning model designed for efficient analysis and processing of large-scale 3D synthetic traffic sign board datasets. With an ever-increasing emphasis on autonomous driving systems and their reliance on precise environmental perception, the ability to accurately interpret traffic sign information is crucial. Our model seamlessly integrates object detection, depth estimation, deformable parts, and text character extraction functionalities, facilitating a comprehensive understanding of road signs in simulated environments that mimic the real world. The dataset used has a large number of artificially generated traffic signs for 183 different classes. The signs include place names in Japanese and English, expressway names in Japanese and English, distances and motorway numbers, and direction arrow marks with different lighting, occlusion, viewing angles, camera distortion, day and night cycles, and bad weather like rain, snow, and fog. This was done so that the model could be tested thoroughly in a wide range of difficult conditions. We developed a convolutional neural network with a modified lightweight hourglass backbone using depthwise spatial and pointwise convolutions, along with spatial and channel attention modules that produce resilient feature maps. We conducted experiments to benchmark our model against the baseline model, showing improved accuracy and efficiency in both depth estimation and text extraction tasks, crucial for real-time applications in autonomous navigation systems. With its model efficiency and partwise decoded predictions, along with Optical Character Recognition (OCR), our approach suggests its potential as a valuable tool for developers of Advanced Driver-Assistance Systems (ADAS), Autonomous Vehicle (AV) technologies, and transportation safety applications, ensuring reliable navigation solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.