The accuracy of time delay estimation seriously affects the accuracy of sound source localization. In order to improve the accuracy of time delay estimation under the condition of low SNR, a delay estimation optimization algorithm based on singular value decomposition and improved GCC-PHAT weighting (GCC-PHAT- weighting) is proposed. Firstly, the acoustic signal collected by the acoustic sensor array is subjected to singular value decomposition and noise reduction processing to improve the signal-to-noise ratio of the signal; then, the cross-correlation operation is performed, and the cross-correlation function is processed by the GCC-PHAT- weighting method to obtain the cross-power spectrum; finally, the inverse transformation is performed to obtain the generalized correlation time domain function, and the peak detection is performed to obtain the delay difference. The experiment was carried out in a large outdoor pool, and the experimental data were processed to compare the time delay estimation performance of three methods: GCC-PHAT weighting, SVD-GCC-PHAT weighting (meaning: GCC-PHAT weighting based on singular value decomposition) and SVD-GCC-PHAT- weighting (meaning: GCC-PHAT- weighting based on singular value decomposition). The results show that the delay estimation optimization algorithm based on SVD-GCC-PHAT- improves the delay estimation accuracy by at least 37.95% compared with the other two methods. The new optimization algorithm has good delay estimation performance.
Read full abstract