Humanity stands at a pivotal moment of technological revolution, with artificial intelligence (AI) reshaping fields traditionally reliant on human cognitive abilities. This transition, driven by advancements in artificial neural networks, has transformed data processing and evaluation, creating opportunities for addressing complex and time-consuming tasks with AI solutions. Convolutional networks (CNNs) and the adoption of GPU technology have already revolutionized image recognition by enhancing computational efficiency and accuracy. In radiology, AI applications are particularly valuable for tasks involving pattern detection and classification; for example, AI tools have enhanced diagnostic accuracy and efficiency in detecting abnormalities across imaging modalities through automated feature extraction. Our analysis reveals that neuroimaging and chest imaging, as well as CT and MRI modalities, are the primary focus areas for AI products, reflecting their high clinical demand and complexity. AI tools are also used to target high-prevalence diseases, such as lung cancer, stroke, and breast cancer, underscoring AI’s alignment with impactful diagnostic needs. The regulatory landscape is a critical factor in AI product development, with the majority of products certified under the Medical Device Directive (MDD) and Medical Device Regulation (MDR) in Class IIa or Class I categories, indicating compliance with moderate-risk standards. A rapid increase in AI product development from 2017 to 2020, peaking in 2020 and followed by recent stabilization and saturation, was identified. In this work, the authors review the advancements in AI-based imaging applications, underscoring AI’s transformative potential for enhanced diagnostic support and focusing on the critical role of CNNs, regulatory challenges, and potential threats to human labor in the field of diagnostic imaging.
Read full abstract